

1

Executive Summary

Project Objective
CySecAgri’s primary goal is to develop an easily accessible, secure, closed loop platform that allows
large and small farms to manage and track IoT sensor readings from all across their crops. This
objective will take the form of a secure mobile application that communicates with a private AWS
instance to provide real time data tracking of sensors deployed in fields anywhere in the world.

Development Standards & Practices Used
Flutter Application:

● ISO/IEC 5055:2021
● ISO/CD 18893

Cloud Computing:
● ISO/IEC 19944-1 (2020)
● AWS Well-Architected framework

IoT Sensors & Basestation:
● IEEE 802.15.4
● IEEE 802.11ac
● LoRa Alliance Specifications

Summary of Requirements
Functional Requirements:

● IoT soil moisture sensor
○ Data collection
○ Medium-long range wireless transmitter (LoRa)

● IoT basestation
○ Data logging
○ Medium-long range receiver to sensors (LoRa)
○ Wifi data transfer to AWS cloud
○ Secure and consistent data logging and distribution

● AWS cloud
○ Data logging for verified data integrity
○ Data graphing to display to farmers
○ Data transfer using MQTT for IoT and SQS for application
○ Use of Amazon DynamoDB, Lambda, IAM, and Elasticsearch to support data flow

and security
● Flutter application

○ Secure login and sign up authentication for each user

https://www.iso.org/standard/80623.html
https://www.iso.org/standard/85161.html
https://www.iso.org/obp/ui/#iso:std:iso-iec:19944:-1:ed-1:v1:en
https://aws.amazon.com/architecture/well-architected/?wa-lens-whitepapers.sort-by=item.additionalFields.sortDate&wa-lens-whitepapers.sort-order=desc&wa-guidance-whitepapers.sort-by=item.additionalFields.sortDate&wa-guidance-whitepapers.sort-order=desc
https://en.wikipedia.org/wiki/IEEE_802.15.4
https://en.wikipedia.org/wiki/IEEE_802.11#802.11ac
https://lora-alliance.org/about-lorawan/

2

○ Ability to add/remove/rename sensors
○ Data visualization and representation of sensor data
○ Data logging and graphing of sensor data
○ Send and receive data from to the AWS cloud via Rest API

Non-Functional Requirements:
● IoT soil moisture sensor

○ Secure and consistent data collection and distribution
○ The IoT sensor will be able to withstand different climate conditions like rain,

snow, and wind
● IoT basestation

○ Secure and consistent data logging and distribution
○ The IoT basestation will be able to withstand different climate conditions like rain,

snow, and wind
● AWS cloud

○ Data can be stored and accessible from any location and time
○ Stored data will be secure
○ Deploy infrastructure via Terraform

● Flutter application
○ Will be available for both Android and iOS based devices
○ Will display sensor data to the user via two pages, a scroll view and a graph view
○ Users will only be able to see their sensor’s data

Physical Requirements:
● Minimal Footprint (Constraint)

○ Can not take up space needed for crops
○ Can not impede tractor movement.

● Weather resistant (Constraint)
○ Water-proof
○ Hot and cold temperature tolerance

● High Visibility
○ Distinct colors to make it easy to locate in a field
○ Reflector strips at night and inclement weather

Resource Requirements:
● Batteries should last from planting to harvest

○ Minimal maintenance needed
Environmental Requirements:

● Batteries don’t leak into soil
● Materials don’t change soil nutrient levels

UI Requirements:
● Flutter application

○ Data is only accessible to platform user
○ System performs identically regardless of location
○ Application operates on multiple operating systems
○ Application can handle multiple users at the same time
○ Users can not view other users data

3

Security Requirements:
● IoT Sensors & Basestation

○ Data will be encrypted when stored on disk
○ Data will be encrypted end-to-end in transit
○ Sensors will be authenticated to the basestation using OTAA

● AWS Cloud
○ User roles will be properly separated
○ Minimum permissions will be allowed for all database accesses

● Flutter Application
○ Proper data sanitization will be enforced
○ Users will only be able to access their accounts data

Applicable Courses from Iowa State University Curriculum
● CprE 309 for creating the frontend and backend connections
● CprE 288 for working with UART and serial interfaces of IoT chips
● CprE 230/231 for understanding security principals
● CprE 489 for networking and data communication principles

New Skills/Knowledge acquired that was not taught in courses
● LoRaWAN connection protocols
● Flutter application design
● AWS API setup
● All AWS service knowledge

4

Table of Contents
Project Objective...1
Development Standards & Practices Used... 1
Summary of Requirements... 1
Applicable Courses from Iowa State University Curriculum... 3
New Skills/Knowledge acquired that was not taught in courses.. 3
Figures/Tables/Symbols/Definitions... 7
1 Team...8

1.1 Team Members...8
1.2 Required Skill Sets for Your Project... 8
1.3 Skill Sets covered by the Team... 8
1.4 Project Management Style Adopted by the team... 8
1.5 Initial Project Management Roles..8

2 Introduction..9
2.1 Problem Statement... 9
2.2 Intended Users and Uses..9
2.3 Requirements & Constraints...10
2.4 Engineering Standards.. 12

3 Project Plan.. 13
3.1 Project Management/Tracking Procedures... 13
3.2 Task Decomposition.. 13
3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria...14
3.4 Project Timeline/Schedule..15
3.5 Other Resource Requirements..15

4 Design... 16
4.1 Design Context...16

4.1.1 Broader Context..16
Table 2.. 16

4.1.2 Prior/Related Work & Solutions..17
4.1.3 Market Survey...17
4.1.3 Technical Complexity.. 18

4.2 Design Exploration..19
4.2.1 Design Decisions..19
4.2.2 Ideation.. 19
4.2.3 Decision-Making and Trade-Off..20

Table 3... 20
4.3 Proposed Design... 20

4.3.1 Overview.. 20
4.3.2 Detailed Design and Visual(s).. 21

IoT Sensors & Basestation...21

5

Devices... 21
Cloud Storage & Processing.. 21
Front End Application..22

4.3.3 Functionality..23
Initial Setup...23
Daily Use..23

4.3.4 Areas of Concern and Development... 24
IoT Devices..24
Cloud... 24
Front End.. 24

4.4 Technology Considerations... 24
LoRA RF and LoRaWAN.. 24
Amazon Web Services (AWS).. 25
Flutter.. 25

4.5 Design Analysis... 25
IoT Sensors & Basestation.. 25
Cloud... 26
Front End.. 26
Overview... 27

5 Testing...27
5.1 Unit Testing..27
5.2 Interface Testing..27
5.3 Integration Testing..28
5.4 System Testing.. 28
5.5 Regression Testing.. 29
5.6 Acceptance Testing... 29
5.7 Security Testing...29

5.7.1 Threat Scenarios and Mapping...29
5.7.2 Mobile Application Testing.. 30
5.7.3 AWS Infrastructure Testing..30
5.7.4 Basestation/Sensor Testing... 31

5.8 Results.. 31
Table 4..31
5.8.1 Mobile App Testing Results... 32
5.8.2 AWS Testing Results.. 36
5.8.3 Basestation Testing Results... 36

5.9 Remediations...37
6 Implementation...38

6.1 Implementation Since 491.. 38
7 Professional Responsibility... 39

Table 5... 39

6

7.1 Areas of Responsibility..40
7.2 Project Specific Professional Responsibility Areas..41
7.3 Most Applicable Professional Responsibility Area... 42

8 Future Work...42
8.1 IoT Devices Future Work..42
8.2 AWS Future Work...43
8.3 Mobile App Future Work... 43

9 Closing Material...43
9.1 Discussion..43
9.3 Conclusion...43

7

Figures/Tables/Symbols/Definitions

Figure 1. Gantt Chart (Appendix A)

Figure 2. System Diagram (Appendix B)

8

1 Team

1.1 TEAM MEMBERS

David Wolfe, Tom Ruminski, Joe Hunter, Rian Lamarque, Eli Hanson

1.2 REQUIRED SKILL SETS FOR YOUR PROJECT

AWS service experience

Flutter framework experience

Lambda device management

GPIO programming

Python programming experience

1.3 SKILL SETS COVERED BY THE TEAM

AWS service experience is covered by Rian Lamarque

Lambda device management is covered by Eli Hanson and Rian Lamarque

Python programming is covered by David Wolfe

GPIO programming is covered by Tom Ruminski

Flutter framework experience is covered by Joe Hunter and David Wolfe

1.4 PROJECT MANAGEMENT STYLE ADOPTED BY THE TEAM

Our team agreed to adopt an agile development project.

1.5 INITIAL PROJECT MANAGEMENT ROLES

David Wolfe - IoT Sensors & Basestation, Meeting Note Taker

Tom Ruminski - IoT Sensors & Basestation

Joe Hunter - Frontend development

Rian Lamarque - AWS Infrastructure

Eli Hanson - AWS Infrastructure

9

2 Introduction

2.1 PROBLEM STATEMENT

Our project is focused on solving the problem of professional farmers and hobby gardeners
needing to manually test, record, and chart IoT sensor data. The solution we will work towards will
include the farmers deploying IoT sensors and a basestation to aggregate data. From that
basestation, data will be uploaded to the cloud for storage. We will then develop a front-end
application for accessing this data. Our solution will include a number of different charts and
graphs to help the users track crop progress and health over a selected period of time. We will also
allow specific users to run different intrusion detection algorithms on the data that has been
collected. These algorithms will produce alerts for the user if there are any issues with the data
collection, if there are any data values that are out of the ordinary, or if there has been an indicator
of compromise.

2.2 INTENDED USERS AND USES

Intended Users:
1. Large Scale Farmers
2. Gardeners (Smaller family farms)
3. System Administrators
4. People who need to monitor plants from a distance (Corporate or Co-Op)
5. Owners of only house plants (Students)
6. People learning to take care of plants

Beneficial User Groups:
All the users listed above will benefit from our project since it will allow them to easily see
the conditions of their plants and soil. Some of the benefits will include increased free time
and less monetary overhead for monitoring their crops.

Intended User breakdown by persona and needs:
Large Scale Farmers Persona: Majority are white, older males. Their hobbies and
interests include farming. They are motivated to make a living and feed the world. Their
personalities are usually more business-oriented and value quantity and value of their
produce.
Need For this Product: This product gives large-scale farmers the ability to collect more
data about their field, get immediate alerts if problems occur, and track data trends over
time.

Gardeners (Smaller family farms) Persona: Majority are male and own their family
farm. Their hobbies include gardening and farming. Their motivations to do this are for
retirement and their own personal interests. They are also very personally interested in the
farm's success with a community focus.
Need For this Product: This product will allow gardeners to monitor water levels while
away from the field, get notification reminders, and reduce time spent collecting data.

10

System Administrators Persona: SA’s demographic would be technically oriented people
making a living off this product. Hobbies for these people would be technology and
agriculture. Their motivations would be to help farmers and earn a paycheck. Their
personality would be very technical and problem-oriented. They would value customer
satisfaction.
Need For this Product: This product will give System Administrators the ability to set
permission levels for different users.

People who need to monitor plants from a distance (Corporate or Co-Op) Persona:
These people would be businessmen or women who may not be on the farm too often.
Their hobbies would include analyzing data, discovering new products and ideas, and being
around people. Their work motivation would be business oriented and growing their farms.
Their personality would be outgoing and personable. They would value company
satisfaction and profit.
Need For this Product: This product will give Corporate/Co-Op users the ability to
analyze their farms and fields over time and get consistent, immediate data from the fields.

Owners of only house plants Persona: This demographic of people would be
homeowners or students who want to improve their living conditions with plants. Their
hobbies are very open-ended, but all would at least have some interest in plants. Their work
motivation wouldn’t be very relevant since they aren't making money from our product.
They could have a wide range of personalities since the demographic is so broad. They
would value their time and ease of information.
Need For this Product: This product will give house plant owners the ability to monitor
water levels while being away from the house and get notification reminders.

People learning to take care of plants Persona: This demographic leans toward
students. Their hobbies would include learning about agriculture and horticulture. Their
work motivation would be related to school and their own interests. Their personalities
would be very broad, but all would be eager to learn about plants and soil conditions. They
would value and have aspirations of bettering the field of agriculture and horticulture.
Need For this Product: This product will give people learning about plants the ability to
monitor water levels, get notification reminders, and easily see what needs the plants have
as well as how to fulfill those needs.

2.3 REQUIREMENTS & CONSTRAINTS

Functional Requirements:
● IoT soil moisture sensor

○ Data collection
○ Medium-long range wireless transmitter (LoRa)

● IoT basestation
○ Data logging
○ Medium-long range receiver to sensors (LoRA)
○ Wifi data transfer to AWS cloud
○ Secure and consistent data logging and distribution

11

● AWS cloud
○ Data logging for verified data integrity
○ Data graphing to display to farmers
○ Data transfer using MQTT for IoT and SQS for application
○ Use of Amazon RDS, IAM, and Elasticsearch to support data flow and security

● Flutter application
○ Secure login and sign up authentication for each user
○ Ability to add/remove/rename sensors
○ Data visualization and representation of sensor data
○ Data logging and graphing of sensor data
○ Send and receive data from to the AWS cloud via Rest API

Non-Functional Requirements:
● IoT soil moisture sensor

○ Secure and consistent data collection and distribution (constraint)
○ The IoT sensor will be able to withstand different climate conditions like rain,

snow, and wind
● IoT basestation

○ Secure and consistent data logging and distribution
○ The IoT basestation will be able to withstand different climate conditions like rain,

snow, and wind
● AWS cloud

○ Data can be stored and accessible from any location and time
○ Stored data will be secure (constraint)
○ Deploy infrastructure via Terraform and potentially Drone

● Flutter application
○ Will be available for both Android and iOS based devices
○ Will display sensor data to the user via two pages, a scroll view and a graph view
○ Users will only be able to see their sensor’s data

Physical Requirements:
● Minimal Footprint

○ Can not take up space needed for crops (constraint)
○ Can not impede tractor movement (constraint)

● Weather resistant
○ Water-proof (constraint)
○ Hot and cold temperature tolerance (constraint)

● High Visibility
○ Distinct colors to make it easy to locate in a field
○ Reflector strips at night and inclement weather

Resource Requirements:
● Batteries should last from planting to harvest

○ Minimal maintenance needed

12

Environmental Requirements:
● Batteries don’t leak into soil
● Materials don’t change soil nutrient levels

UI Requirements:
● Flutter application

○ Data is only accessible to platform user
○ System performs identically regardless of location
○ Application operates on multiple operating systems
○ Application can handle multiple users at the same time
○ Users can not view other users data

Security Requirements:
● IoT Sensors & Basestation

○ Data will be encrypted when stored on disk
○ Data will be encrypted end-to-end in transit
○ Sensors will be authenticated to the basestation using OTAA

● AWS Cloud
○ User roles will be properly separated
○ Minimum permissions will be allowed for all database accesses

● Flutter Application
○ Proper data sanitization will be enforced
○ Users will only be able to access their accounts data

2.4 ENGINEERING STANDARDS

Flutter Application:
● ISO/IEC 5055:2021: Software quality standards for source code to be measured upon. The

standard considers the reliability, security, performance efficiency, and maintainability of
source code.

● ISO/CD 18893: Applies to mobile elevating work platforms to protect users from personal
injury, property damage, and accidents. It also establishes criteria for inspection,
maintenance, and operation.

Cloud Computing:
● ISO/IEC 19944-1 (2020): Provides guidance on ensuring data flow and use as well as making

cloud service agreements. Helps guide transparent use of data across the cloud services.
Doing so will maintain trust between use parties and protects personally identifiable
information (PII)

● AWS Well-Architected framework: Defines six pillars to help create the best design possible
in the cloud. Assists with efficiency, cost-optimization, and sustainability.

IoT Sensors & Basestation:
● IEEE 802.15.4 is a standard that defines the operation of a low-rate wireless personal area

network (LR-WPAN). It specifies the physical layer and media access control for
LR-WPANs.

13

● IEEE 802.11ac is the most recent update to ac wi-fi standards. Our devices may use wi-fi, so
following the IEEE standards will be important for compatibility purposes.

● LoRa Alliance is the governing body controlling specifications for the three classes of LoRa
devices (A, B, C). It controls regional frequency bands, data rates, and security standards for
LoRa devices.

3 Project Plan

3.1 PROJECT MANAGEMENT/TRACKING PROCEDURES

Our team plans on using an Agile project management style with the addition of a Gantt
chart to help keep track of long-term goals. This is the most effective way to manage our team due
to the fact that each aspect of our project is closely connected to one another. In order for the AWS
team to complete their weekly goals, the IoT team must also be making strides in goals related to
sending data to AWS. The same goes for the front end requiring AWS data to be used for
visualization and display. Having quick weekly meetings and Agile-like sprints will allow us to
ensure that teamwork is happening and that nobody is being seriously bottlenecked by anybody
else.

The use of a Gantt chart on top of our standard Agile development will be useful to ensure
we aren’t spending more time than we have on specific aspects of the project. Each of the
components of our system will require constant tweaking and development. However, we plan to
track several major milestones with our Gantt chart. These milestones include a full connection
between our IoT basestation and AWS, a full connection between AWS and our frontend
application, and different data visualization goals.

The software we plan on using to manage these goals is a combination of GitLab for code
management and version control as well as a shared KanBan board hosted on Mattermost to help
keep our teams working efficiently and following our Agile development goal.

3.2 TASK DECOMPOSITION

Our team has broken all major projects down into more manageable tasks that can be
delegated to individual team members. These decomposed tasks are shown below. They are
grouped by overarching sprint goal. These tasks are also displayed in Figure 1: Gantt Chart.

● IoT Basestation connection to AWS
○ Being able to send and receive data securely
○ Storing data securely and making it easily accessible
○ Ensure access to user-specific data

● Flutter App connection to AWS
○ Being able to send and receive data securely
○ Allow transmission of data to legitimate users

● Frontend data visualization
○ Correctly displaying our data in a way that Farmers can understand and use

● Connect the IoT Sensors to the Basestation

https://mattermost.com/boards/?utm_source=bing&utm_medium=cpc&utm_campaign=Bing_Boards_Kanban_NA&utm_adgroup=&utm_term=kanban%20board&utm_content=&msclkid=bad696cd6fc7176924b5f58b9252b0e5

14

○ Setting up LoRaWAN protocol to connect the sensors and basestation
● Secure the AWS Cloud

○ Limited permissions
● Securing the IoT sensors and Basestation

○ End to end encryption
○ Exhaustive penetration testing

● Secure the Flutter App
○ End to end encryption
○ Exhaustive penetration testing

3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

Major milestones for our project are grouped by large features in the end application. We’ve
included specific and measurable metrics for success to ensure each of these milestones are
accomplished to a satisfactory level.

● Round trip data connection from IoT sensor to frontend
○ Metric: Live updates when new sensor readings come in
○ Metric: Delay of no greater than 5 minutes

● Secure login system for frontend
○ Metric: Offensive security testing is unable to find flaws in login page

● AWS data logging
○ Metric: Data stored in the cloud
○ Metric: Data separated by user/group

● Data analysis implemented in the cloud
○ Metric: Data is being fed into AWS machine learning algorithm
○ Metric: Accurate assessments of the input data is returned from the algorithm

● Front end data graphing
○ Metric: Users are able to see useful visualizations of their data

15

3.4 PROJECT TIMELINE/SCHEDULE

Figure 1. Gantt Chart (Appendix A)

3.5 OTHER RESOURCE REQUIREMENTS

SenseCAP S2104 - LoRaWAN® Wireless Soil Moisture and Temperature Sensor:
● Cost: $130 (x2)
● 2 Sensors
● Battery Type: Standard D-size
● LoRaWAN Device Class A (least power consuming)
● No required modifications

Basestation:
● RaspberryPi Model 4B- x1

○ Cost: $180 (market price)
● LoRaWAN Concentrator Chip RAK5146 Pi HAT- x1

○ Cost: $120

16

4 Design

4.1 DESIGN CONTEXT

4.1.1 Broader Context

Table 2

Area Description Examples

Public health,
safety, and
welfare

How does your project affect the general
well-being of various stakeholder
groups? These groups may be direct
users or may be indirectly affected (e.g., a
solution is implemented in their
communities)

Increasing/reducing exposure to
pollutants and other harmful
substances, increasing/reducing
safety risks, and
increasing/reducing job
opportunities.

Global, cultural,
and social

How well does your project reflect the
values, practices, and aims of the cultural
groups it affects? Groups may include but
are not limited to specific communities,
nations, professions, workplaces, and
ethnic cultures.

The development or operation of
the solution would violate a
profession’s code of ethics, and
implementation of the solution
would require an undesired change
in community practices.

Environmental What environmental impact might your
project have? This can include indirect
effects, such as deforestation or
unsustainable practices related to
materials manufacture or procurement.

Increasing/decreasing energy
usage from nonrenewable sources,
increasing/decreasing
usage/production of non-recyclable
materials.

Economic What economic impact might your
project have? This can include the
financial viability of your product within
your team or company, cost to
consumers, or broader economic effects
on communities, markets, nations, and
other groups.

The product needs to remain
affordable for target users, the
product creates or diminishes
opportunities for economic
advancement, and high
development cost creates risk for
the organization.

● Public health, safety, and welfare
○ IoT systems reduce the need for manual data collection, which can be physically

taxing. This will increase safety for those who are injured or otherwise incapable of
performing this task.

○ Securing our devices means increased safety and privacy for those who operate
them.

○ Increased agricultural data collection and analysis could lower the barrier to entry
for people interested in pursuing a career in agriculture.

○ IoT smart agriculture could increase crop yields and improve food security globally.
● Global, cultural, and social

○ Through securing agricultural IoT devices, we can increase trust with farmers and
the general public.

17

○ NIST security standards for IoT systems will need to be of utmost importance.

● Environmental
○ IoT sensors and gateways can be powered by renewable energy. As technology

improves, our design can be adapted to renewable energy sources.
○ Without the need to produce batteries, less toxic pollutants will be released as a

byproduct of production.
○ Our IoT devices are considered low-power and use as little energy as possible.
○ By taking advantage of distributed sensor networks, agriculturalists can better

target specific field areas that may need additional resources instead of applying
potentially harmful materials throughout the entire field.

● Economic
○ Product cost can be tailored to consumers depending on their needs (e.g. a small

farm will require fewer sensors and cloud resources than a corporate farm).
○ Our IoT security implementations will increase trust in such systems and could

expand their adoption into more farms.
○ With real-time access to sensor data in their fields, farmers could potentially

increase their yields which might reduce the cost of food to consumers.

4.1.2 Prior/Related Work & Solutions
A. Mishra, “Cloud-based multi-sensor remote data acquisition system for precision agriculture
(CSR-DAQ),” Thesis, 2020.

● Mishra details a cloud infrastructure using MQTT as the key protocol for data transmission
to and from the cloud. The primary focus of the paper was on cloud architecture. Our
design is similar at the cloud level but will be a full physical implementation of an IoT
system with data collection on soil moisture and temperature.

○ Our work will also be a combination of the LoRa RF/LoRaWAN protocols and
MQTT. LoRa is our physical layer transmission from our sensor to our gateway and
was not a component of Mishra’s design

● Mishra created a web application as well as an Android application for data representation
to the customer. The web application was developed using Python and the Flask
framework, and the Android application using Java and Android Studio. Both were
connected to AWS through an Elastic Beanstalk Container and Amplify, respectively.

○ Instead of creating a web application, our group decided to create a mobile
application. We designed a Flutter application, to allow us to build an iOS and
Android application simultaneously. Our application will also be connected to
AWS via Amplify.

18

4.1.3 Market Survey

Below is a comparison of our product against two other products on the market. We compare the
price of each product for two sensors and a basestation as well as the key features and drawbacks of
each product.

Solution Price Key Features Drawbacks

CySecAgri
(our product)

$300 (Basestation)
$260 (2 Sensors)

Total: $560

● Instant Access
● Configurable
● Scalable
● Comm. range = ~1km
● Versatile

● Beta (bugs)
● Limited to LoRaWAN

compatible devices

HOBO $375(Gateway)
$680 (2 Sensors)

Total: $1,055

● Robust
● Stable
● High Data Rate
● Plug-and-play

● Not customizable
● Annual data plan
● Comm. range = ~30m

KaaIoT
(Just Basestation)

$187 (Gateway)

Total: $187

● Versatile
● Supports multiple

MAC protocols

● Not user friendly
● Doesn’t include sensors
● Out of reach of average

user to set up
● Not weatherproof

4.1.3 Technical Complexity

Our design satisfies the following two benchmarks for technical complexity:

1. Our design consists of multiple components/subsystems that each utilize distinct scientific,
mathematical, or engineering principles

2. The problem scope contains multiple challenging requirements that match or exceed
current solutions or industry standards.

These benchmarks are met in the following ways:

● At an infrastructure level, our system combines a variety of network protocols. We will be
using LoRaWAN for communication between sensors and gateways, the TCP/IP suite for
communication with the network server (The Things Network), MQTT from the network
server to AWS IoT Core, and AWS IoT Core’s set of rules for communication with AWS
Cloud Services

19

● After implementation, extensive testing will be performed on security protocols between
sensors, gateways, the cloud, and our user application

● We will be employing different kinds of hardware/computing elements. LoRa capable
sensors, a RaspberryPi with a LoRaWAN transceiver, and AWS Cloud Services will be our
core components.

● Our cloud infrastructure will be built using the AWS services mentioned above. Each
service will require appropriate scoping of permissions, cost optimization, and full
functionality testing. The infrastructure will be deployed to AWS via Terraform and a
GitLab CI/CD pipeline. Services used will include Lambda, DynamoDB, IoT Core, SQS, and
IAM.

● Challenging requirements include:
○ Managing several different protocols between the elements of our infrastructure
○ Low-power authentication for sensors and gateways
○ Data analysis and anomaly detection at the cloud level
○ UX design for farmers viewing their data through our application

4.2 DESIGN EXPLORATION

4.2.1 Design Decisions

The following are three crucial design decisions we have made:

1. We chose a star topology and LoRa RF physical medium for sensor-to-gateway
communication. This is less complex than mesh-network systems but reduces weak points
in our future security protocols. LoRa RF was chosen as our communication medium
because it operates on low power and has a range of ~1km. This decision will enable us to
better protect against “imposter” attacks and implement fewer nodes across a large area.

2. We chose Flutter to develop our user interface. We chose Flutter because it reduces
development time yet increases access to our application. This is possible due to Flutter
providing the ability to have an iOS and Android application be generated from a single
code base. With Flutter, we only have to develop a singular application, reducing
development time, which can be used by both major mobile platforms, increasing access.

3. Cloud computing platforms were another area where our team had to reach a decision. We
decided to use AWS to service our cloud computing needs. This decision is important to
our project's success because cloud computing can be difficult to learn. If the platform we
chose did not provide the necessary tools to complete our project, we would be at a loss of
significant development time.

4.2.2 Ideation

One decision that needed to be made was: deciding which front-end framework we will use to
develop our application. To make this decision, we used the ideation process of brainstorming.
From our brainstorming, we came up with five different frameworks that we could use to build our
application. Those frameworks were:

20

● React Native
● Android (Java)
● Flutter
● IOS (Swift)
● Creating an application for all platforms, i.e. web and mobile

After we brainstormed these five different choices, we decided to research each choice to
see which framework would work best for our project. This research step took about a week, and
once we had finished it, we moved on to our next step, which was creating a decision-making
matrix.

4.2.3 Decision-Making and Trade-Off

From our matrix, Flutter was the clear decision for us. Our criteria included how much time would
be spent developing compared to our other options, how much experience we have with each
option, and how easy it would be for our users to access our application. Flutter was tied in the time
category, as most other options would require the same amount of development time. Flutter was
also tied for first in the experience category, as our team as a whole had the same amount of
experience with Flutter as React. Where Flutter took the lead was in the access category. With
Flutter, we would be able to create an application for all major mobile platforms, allowing our users
to easily access our application from their smartphones. This made Flutter our best option to use as
a front-end framework.

Table 3

Selection
Criteria

Criterion
Weight

React Android Flutter IOS All

Score Total Score Total Score Total Score Total Score Total

Time .25 3 .75 3 .75 3 .75 3 .75 1 .25

Experience .5 3 1.5 2 1 3 1.5 1 .5 1 .5

Access .25 3 .75 2 .5 4 1 2 .5 5 1.25

Total 1 9 3 7 2.25 10 3.25 6 1.75 7 2

4.3 PROPOSED DESIGN

4.3.1 Overview

Our project is focused on solving the problem of professional farmers and hobby gardeners needing
to manually test, record, and chart IoT sensor data. The solution we will work towards will include
the farmers deploying IoT soil sensors and a RaspberryPi basestation to aggregate data. From the
basestation, data will be uploaded to Amazon Web Services for storage and processing. Users then
access this data and information from our front-end application. This front-end app will give the
user access to different charts and graphs to help the users track crop progress and health over a
selected period of time. We will also allow specific users to run different intrusion detection
algorithms on the data that has been collected. These algorithms will produce alerts for the user if

21

there are any issues with the data collection, if any data values that are out of the ordinary, or if
there has been an indicator of compromise from a cyber security perspective. Below is a more
detailed breakdown of the individual components and technologies we plan on using for our first
deployment.

4.3.2 Detailed Design and Visual(s)
Our senior design system consists of three key components: IoT Sensors & Basestation, cloud
storage & processing, and the front-end application.

Figure 2. System Diagram (Appendix B)

IoT Sensors & Basestation

Starting with the IoT Sensors & Basestation, we have two sensor nodes connected to a basestation
in a star network topology. This basestation will connect to a network server (AWS IoT Core) which
will then interface with other AWS services utilized by our Cloud Development team. This system
will be scalable by adding more basestations and nodes to the design.

Figure 3. IoT Sensor and Basestation Diagram.

Devices

We have purchased two SenseCAP S2104 sensors which collect soil temperature and moisture data.
These sensors are LoRaWAN enabled and will broadcast data to the basestation. The basestation is
a RaspberryPi with a LoRaWAN receiver connected to it which aggregates the data and uses the
CRC-16/Kermit algorithm to check for corruption. The RaspberryPi is WiFi enabled and will
connect with AWS IoT Core via TCP/IP. AWS IoT Core is responsible for handling uplinks and
downlinks from the sensors to the AWS Services the cloud team is using.

22

Cloud Storage & Processing

Currently, the cloud storage option uses s3 with specified path names for each farm. The data
travels from the basestation to the IoT Rule, which passes the message through a Simple Queue
Service, reaching a Lambda function to break down the message. The Lambda function breaks
down the message per hex values and converts them to decimal values that are then pushed into
the database. In the future, this process may include the AWS ELK machine learning stack to ensure
the data is validated.

Figure 4. Cloud Storage & Processing Diagram.

Front End Application

For our application we decided to use a Flutter application to build our application layer. After
researching multiple different ways to develop, including making a decision matrix, we came to the
conclusion that Flutter would be our best choice for development. To connect our app to Amazon
Web Services, we used AWS Amplify, a backend service that connects our frontend Flutter app to
AWS. To connect to our backend data, we will use Rest API which will allow for easy and efficient
communication. We will use multiple different Widget libraries to build our application, including
AppBar, BottomNavigationBar, and Containers. These libraries will allow us to build a quality
application that looks modern and performs efficiently. We will display information about our
sensor on multiple different pages that we will design for our users. These pages will be
pre-designed using Figma.

23

Figure 5. User & AWS flow diagram

Figure 6. Figma designs for app pages (Appendix D).

4.3.3 Functionality

Initial Setup

Our end users would purchase our solution as a kit with a basestation and select sensors included.
They would then place these sensors in different positions around their farm, garden, or home.
Users will then download our front-end application to initialize their sensors for monitoring. Users
will be able to name all of the sensors they have placed. There will be two different ways for users to
view their sensor data. The first will be a scroll view that shows all the most recent sensor values as
a scrollable list. The second way will be through a line graph where users will be able to see trends
over time from their field.

Daily Use

After the initial setup, users will simply have an application on their phone, tablet, or computer that
allows them to monitor the sensor's reading at any time of day from anywhere. Users will open the
mobile application and be greeted with a list of the different sensors and locations they are
monitoring. From there, they will be able to tap into any specific sensor and get live readings of the

24

sensor values as well as a graphical representation of the sensor readings from the last week. This
time scale for historical data will be customizable by the user.

4.3.4 Areas of Concern and Development

The current design satisfies physical requirements by keeping a small profile in sensor distribution.
Sensors can be sparsely placed due to the use of a LoRa RF, star topology rather than a mesh
network. The sensors we purchased are also weather and temperature resistant, with a rating
between -40 and 185 degrees Fahrenheit. This will be sufficient for a majority of climates, including
Iowa.

Our primary concern for our user and client needs is security. Security is very important to both our
clients and our user. We know we can meet the main functionality of our product by delivering data
from our sensors to user devices. Securing the data being transferred will be a little trickier. We
must secure our data on all three levels of our product (Hardware, Cloud, User Interface), each of
which will require unique security solutions.

IoT Devices

Currently we use CRC16/Kermit to ensure data integrity between our IoT sensors and the
basestation. We also employ asymmetric encryption between our basestation and AWS to ensure
data confidentiality when transmitting across the internet. Each sensor has a unique key and EUI
that can be registered to the basestation to help verify sensors. These sensor nodes are simple to
install, and farmers would not need a technician to add more sensors to their farms.

Cloud

To mitigate cloud security concerns, we plan to implement AWS Identity and Access Management
policies so that users will not have unlimited privileges and are able to see other users' data. Also,
we plan to use AWS Cognito to handle user authentication, this will help to make sure that only
authorized users are able to access our cloud resources.

Front End

The front end will employ proper data sanitization to ensure users' security. On top of only allowing
a strict set of characters to be entered for any user input field, user password and account details
will be stored securely in AWS. This includes hashing passwords and transmitting all data over
secure, encrypted channels.

4.4 TECHNOLOGY CONSIDERATIONS

We have made key technology choices within each of our subteams. This includes the protocol
stack between gateways and sensors, our cloud service, and front end application framework.

LoRA RF and LoRaWAN

At the perception level, Sensor-Basestation communication is performed through LoRaWAN and
LoRa RF. The link layer and physical protocol have a key advantage over most other low power
transfer options: range. Bluetooth Low Energy (BLE) and Zigbee are both popularly used in IoT

25

applications for their low power usage. However, these protocol stacks are typically used in a mesh
network configuration where a long signal range can be overkill. Limited to a maximum of 100
meters, BLE and Zigbee are not suited for the sparse dispersion of sensor nodes on a moderately
large farm. Enter LoRa RF. LoRA RF has similar low-power usage at a significantly longer range of
1km. LoRaWAN is the accompanying link layer to LoRa RF, and our purchased sensor node and
transceiver (for the basestation) are already LoRaWAN enabled. In addition, LoRa devices cost
about the same BLE or Zigbee, making it financially viable for our project. In conclusion,
LoRa-enabled devices were chosen for their low-power usage, long range, and affordability.

Amazon Web Services (AWS)

There were three main options we thought about when choosing our cloud platform, AWS, Google
Cloud, and Azure. We chose to go with AWS for a number of reasons. One of them was the fact that
one of the members of the group is very familiar with AWS. Also, our client already had an AWS
account, so it would be simple to give us access to the platform. Our client also mentioned the idea
of using machine learning to implement an intrusion detection system, and AWS has a service that
supports that functionality called ELK. We briefly entertained the idea of using other cloud
platforms, but it quickly became clear that AWS was the best fit for our project due to previous
experience and the services it offers.

Flutter

When first considering what we wanted to create for farmers, we considered multiple different
options. At the start, we debated whether we wanted a web or mobile application. After talking to
farmers about their wants we decided that we would go with a mobile application. Once we decided
on a mobile application, we had to figure out how we would create our mobile application. We
looked at mobile frameworks that were easy to develop for both Android and iOS operating
systems. And after making a decision matrix, we went with a Flutter mobile application. We chose
Flutter because it is a fast, reliable framework that can simultaneously develop an Android and IOS
mobile application.

4.5 DESIGN ANALYSIS

IoT Sensors & Basestation

A survey of the marketplace revealed the SenseCAP S2104 was both fully compatible with our
protocol needs, but was also waterproof and temperature resistant. This made these soil and
temperature sensors the ideal choice for our design. While fabricating our own sensors may have
allowed more flexibility, purchasing configurable sensors allowed more time to focus on security
practices and round trip communication.

Our basestation design went through more trial and error. We needed to purchase a LoRaWAN
concentrator module that could listen for and collect LoRa RF packets from the sensors. Through
experimenting with different LoRaWAN concentrator chips, we settled on the RAK Wireless 5146
PiHAT kit for its reliability and form factor. The concentrator chip connected to a baseboard that
was compatible with a RaspberryPi Model 4B. Using a RaspberryPi allowed us more control over the
basestation and also expanded the testing and debugging we could perform.

26

Lastly, we chose to use The Things Network (TTN) as a network server to aggregate data and
schedule downlink packet delivery to individual sensors. Since both the LoRaWAN concentrator
chip and the sensors were compatible with TTN, we established student accounts and created an
application to accept data from our end devices. We placed an integration with AWS IoT Core in
our TTN application which allowed our sensor data to reach our cloud infrastructure.

Cloud

Our cloud implementation has evolved multiple times throughout our development. We began
with basic lambda functions and a DynamoDB for simple prototyping. Then, we briefly used S3 for
storing all information but quickly realized the limits to scalability and accessibility. Finally, using
AWS Amplify we were able to design a data model which is deployed using DynamoDB. This allows
us to update the data model dynamically such as adding new fields while also managing data
relationships such as one-to-one or one-to-many. Along with this, amplify assists with connecting
this data model to the application through AWS AppSync using GraphQL.

Front End

In the beginning, front-end development has been focused on establishing a connection between
the app and AWS. Getting that established connection took longer than expected. We had originally
planned to use AWS’s Amplify service, but after spending the timespan of a week and a half with no
success, we decided to move away from Amplify and create our own RESTful API system to connect
to AWS. However, this was not a long-term solution. Once that was complete, our attention was
turned to displaying the sensor data in a user-friendly way. We were able to build two different
screens to display data. The first screen is a graph view that tracks the sensor's data values of time.
The second is a scroll view where users can see their sensor data with timestamps to know exactly
when their data has been sent. This was further expanded on by adding a filter system where users
can filter their sensor data to any timespan they desire.

The next step for the front end was to figure out how to securely set up an account system for the
users. We tried a few different ideas but did not want to implement an entire authentication system
when there are already made and more secure APIs than anything we could build. This led us back
to AWS’s Amplify service. We decided to use it authentication system to authenticate users. This
allowed us to speed up our development process significantly and gave us useful API calls to change
usernames, passwords, and emails securely. When we got the Amplify authentication set up, we
decided to move our RESTful API over to Amplify. This allowed our users to securely make their API
requests and allowed for better integration for our AWS team.

The final step that we were able to implement on our front end was sensor addition, deletion, and
rename functionality. We added a profile page where, along with seeing their username, email, and
account ID, users could see their list of sensors. They can edit any of their sensors at any point and
see each sensor's battery percentage. We also have implemented a downlinking feature that allows
users to change the interval rate at which their sensor will send data measurements. This
downlinking feature is the first step to more responsive app functionality that could be developed
further in future research.

27

Overview

We took many approaches to data storage before landing on using AWS DynamoDB through
designing a data model. This process included monitoring the packets we were receiving and
understanding the need for our data to be used and shared between users.

We are also being very cautious about the types of IoT radios and sensors we are selecting for the
project. There are a lot of subtle differences between the parts, and we need to make sure they all
work together. These issues will become harder to resolve as the semester goes on, as part orders
can take several weeks to fill.

5 Testing

5.1 UNIT TESTING

Our CRC-16/KERMIT checking class will be tested for accurate packet validation. This will be tested
by using a distribution of valid and invalid packets to give the class. CRC validation needs to operate
at 100% accuracy, so evaluating accuracy is actually rather simple.

Inside our AWS infrastructure, ensuring that the data is passed between services is crucial. By
running basic test payloads in the AWS console, we can see if the data is successfully passing
through. Our packet analyzer lambda needs to receive information from the IoT Core through the
SQS so we can run our mock basestation script to send information to the IoT Core. From there,
using CloudWatch to view the logs, we can see whether the data reaches the analyzer lambda
successfully or what errors may have occurred. As well as testing in the cloud, these scripts can be
tested locally to see how they react because we know what the packet format will look like.

Additionally, our front-end application incorporates unit testing to ensure our design’s accuracy.
The Flutter framework has a nice directory in the main application directory to create and run unit
tests as well as widget tests called /test. All that is needed to do to be able to run these tests is to
add the test or flutter_test dependency to the pubspec, Flutter’s package manager file. To add even
more functionality to our tests, we also use the Mockito dependency. One downside to unit and
widget testing for Flutter is that widget trees can become very large. This problem means we must
mock many widget functionalities within each test, making them long and abstract. Because of this
downside, we have decided to only create tests for only certain widgets and focus more on manual
testing the larger widgets. This will save us time by not having to mock up so many different
functionalities to the point where some tests become meaningless.

5.2 INTERFACE TESTING

Our two biggest interfaces for this application would be our IoT sensor network and our AWS
infrastructure. Due to the interconnectedness of these two interfaces, it will be essential to not only
test them in their own unit test but also test them together as one large interface. These tests will
include reverse engineering our basestation code and attempting to send malicious or malformed
packets to it from our sensors. If we are able to get one of these modified packets through the
basestation it will be put into our AWS database and could potentially cause more damage to the
stability of our application.

28

Just as we test the data flow from our IoT sensors to AWS, it will be important to understand the
ways in which data from AWS can affect our sensor network. We will be attempting to implement a
naming system where users of our application can name and digitally place sensors over a map
image of their land to better keep track of the positions their readings are coming from. This feature
will require data to be sent from our user configuration database in AWS to the sensor and interact
with them. This will require a large amount of manual testing to ensure AWS is not able to put the
sensors in some state that is unrecoverable or requires physical interaction with the device (hard
resetting it).

5.3 INTEGRATION TESTING

One significant integration path on the hardware end of our IoT system is Sensor-to-Basestation
communication. Due to constructing our own basestation, a lot of testing will need to be completed
on both communication paths of the basestation to ensure our implementation is functioning
properly. Due to the nature of the LoRaWAN protocol, we can expect about a 10% packet loss rate as
a reasonable amount for our system and its applications. Communication testing outside with
obstacles (or the actual crops they’re meant to simulate) should be completed for reliability. If our
packet loss rate is consistent with the 10% margin, it will be considered suitable for our agricultural
application. Since the packet structure created by our sensors have a CRC code attached to it,
accurate transmission can also be examined.

The next integration path is between the basestation and the AWS IoT core. This will operate over
the TCP/IP stack and use an MQTT application protocol. Reliability testing will need to be
completed at this stage to evaluate the functionality of our MQTT implementation. Again, due to
constructing our own basestation, testing will be more focused on the basestation and its
configuration with the AWS IoT Core. Due to our IoT system's infrequent data collection, speed and
latency are not as important to consider during testing. MQTT (particularly Quality of Service 2) is
considered very reliable, and our pathway will need to be held to that standard. To test this, we can
manually disrupt the network connection of the basestation and evaluate how it recovers. If, after
the disruption, the basestation still accurately sends its data and it is properly received by the IoT
core, then our system can be considered reliable for data transmission to the cloud.

The final integration path is between the AWS API gateway and our Flutter front-end application.
This connection is made possible through AWS Amplify’s graphQL queries and received by our
front-end application. To test the functionality and correctness of this connection, we created
widget tests in our front-end application. These tests are similar to how our unit tests for our
front-end application are implemented. We added the Flutter widget_test dependency to our
pubspec, package manager file, and after that, all we have to do is run the tests we created to verify
that they have passed. This will allow us to test the functionality of our application to see
functionality like if buttons are being triggered correctly and pages are being displayed properly.

5.4 SYSTEM TESTING

Our full loop system consists of three smaller subsystems in the IoT sensors, AWS infrastructure,
and frontend application. For system testing, we will need to ensure that we can have data
transferred through our entire system. Once we can do that, we will be able to see how the system
interacts as a whole. This form of testing will be manual in nature because of the size of our system.
Each form of testing prior to this will be integral to getting a foundation for our system testing. Unit

29

testing will allow us to look at a specific aspect of our system, interface testing will help us see how
two parts connect to each other, and integration testing will show us how those paths of dataflow in
our system move.

5.5 REGRESSION TESTING

Since many of our development changes will be centered on the basestation, consistent regression
testing to determine that new security additions have not broken our sensor-basestation-cloud
communication path for uplinks and downlinks. A few uplink and downlink transmissions should
be sufficient for smaller modifications and can be expanded for larger design improvements for
more thoroughness.

The next way our project will regression test is by creating a Continuous Integration and
Continuous Deployment pipeline. This will allow us to test our new code on our old unit and
integration tests. We will create these CI/CD pipes in Gitlab, and once they are set up, they will run
every time we push our code to Gitlab. If one of our old tests fails, the CI/CD pipeline will also fail,
indicating to us that there has been a regression. This will help us with the AWS side of our project
as well as in our front-end application.

5.6 ACCEPTANCE TESTING

We plan on keeping track of whether the test was successful or not and, if not, what specifically the
error was. In order to monitor which areas of our project we have tested, we will categorize the
attacks and mitigation techniques based on the relevant area of the project that they apply to, such
as IoT devices, AWS infrastructure, or frontend applications.

To make sure that our client is aware of our testing progress, we have been providing live
demonstrations during our weekly meetings. Going forward, we will continue this but also increase
communication so that our client is always aware of our progress. Our client has stressed that for a
successful project, we should ensure that the data communication is sent securely from the sensors
to the user through Amazon Web Services. To make sure that our client's needs are satisfied, we
focus not only on securing the inter-component communication but also making sure data is secure
inside each component, such as information stored in databases or adding more sensors.

5.7 SECURITY TESTING

The bulk of our second-semester testing falls into the category of security testing. In order to ensure
comprehensive coverage of our application's attack surface, we created several supporting
documents to help map out vulnerabilities and security concerns in all stages of our application.
These documents can be found in our appendix.

5.7.1 Threat Scenarios and Mapping

In order to most effectively all aspects of our physical and cloud-based systems we broke attacks up
into more approachable scenarios and then mapped those scenarios onto a risk impact matrix as
shown in Figure 7. The scenarios covered are as follows:

30

S1. An attacker is able to break authentication flow and access data for arbitrary user
accounts
S2. An attacker modifies account information between the app and AWS
S3. Our API Endpoints are flooded with requests resulting in a DoS/Fees
S4. A user modifies their account permissions inside of AWS for privilege escalation
S5. Unauthorized data is sent from imitation sensors/basestations to AWS
S6. AWS Developer Account is compromised
S7. Basestation user account is compromised
S8. Common vulnerability scans are run against assets

Figure 7. Risk Impact Matrix for CySecAgri (Appendix E?)

These scenarios cover all of our application's attack surfaces and provide us with an actionable plan
for testing and remediation of any vulnerabilities. With this risk impact matrix, we decided
anything colored yellow or above would need to be tested and anything orange or above must be
remediated if any vulnerabilities are found.

Using this risk matrix we concluded anything medium or higher would need to be tested and
anything discovered to be high risk or worse should be remediated.

5.7.2 Mobile Application Testing

For testing scenarios S1 through S3, we took a multipronged approach to mobile application testing.
We first carried out dynamic analysis by compiling a debug version of our application that allows us
to proxy all API and authentication requests through an analysis app of our choosing. We then
performed static analysis through the decompilation of our final released application. This gave us
further insight into the metadata and hardcoded values that an attacker would have access to after
downloading our app. The results of these tests are detailed in section 5.8.1.

5.7.3 AWS Infrastructure Testing

To test scenario S4 we examined the existing roles and policies across our infrastructure including
Lambda, API Gateway, IoT, DynamoDB, and more. Many of our roles and policies were created with
full access to whatever action and whatever service it needs.

31

For scenario S6 we did an assumed breach of a developer AWS account. Given access to a developer
account, an attacker has full access to every service in AWS. Upon logging in, the attacker can view
recently used services, cost analysis, and more.

5.7.4 Basestation/Sensor Testing

For our basestation testing we performed a black box penetration test against the raspberry pi
running our basestation software. In this test, we followed a standard four-step testing plan that
included: scanning, enumeration, exploitation, and documentation. The details of this test are
provided in section 5.8.4. Due to the highly specialized equipment and physical access requirements
needed to attack the sensors in our network, it was deemed not worth the time investment to test
them manually.

5.8 RESULTS

The results of all of our different tests have been compiled into table 4.

Table 4

Test Name Description Results Actions Taken

GraphQL
Injection Test

This test ensures that an
unauthenticated user cannot
arbitrarily access user data
stored inside of GraphQL

Critical
Vulnerability
Found

Immediate remediation via
authentication changes

Mobile
Application
Reverse
Engineering

This test is used to understand
what data is available to users
that download our app. Reverse
engineering and disassembling
the compiled APK for our app
will reveal any hardcoded
credentials or insecure secret
storage that may not be obvious
during normal development.

Medium
Vulnerability
Found

Noted for future
development

Basestation
External
Penetration
Test

This penetration test is used to
confirm all necessary security
precautions have been taken to
ensure an attacker can’t gain a
foothold on our IoT networks
basestation. The steps involved
in this test are as follows:
scanning, versions
enumeration, exploitation, and
privileged escalation.

Critical
Vulnerability
Found

Immediate remediation via
SSH configuration changes

Basetation Data
Sniffing Attack

In this scenario we would
validate that data transmitted
between the sensors and the
basestation is encrypted. This
test requires specialized radios

Incomplete Requires additional
hardware resources to
perform correctly

32

to be able to capture the
frequencies sent out from our
sensors.

AWS Developer
Account Breach

This test assumed a breach of
our AWS developer accounts by
a malicious actor. The breach
enabled us to understand what
damage could be done to our
infrastructure if a user could
access the accounts.

Medium
Vulnerability
Found

Current actions included
adding MFA to developer
accounts. In the future,
dividing developers into
scoped user groups would
further ensure developer
account and infrastructure
security

AWS Lambda
Privilege
Testing

Testing included examining
roles and policies attached to
resources such as Lambda to
understand the scope. Often
time these resources are able to
take action across resources and
attackers could leverage this to
query or destroy other data.

Medium
Vulnerability
Found

Scoping of policies to the
only resources in which they
must interact with

5.8.1 Mobile App Testing Results

Dynamic:

Detailed instructions for setting up this testing environment can be found in Appendix F. After
establishing a proxy server for all of our mobile app API requests we began seeing what data was
sent as a user browsing the app. We found that the login service provided by AWS offered robust
security in the form of challenge-response based authentication. After the login, it was noticed that
there was a query request being sent to our GraphQL API. The body of the request is shown below
in Figure 8. This query was being made using a static API key stored within the app’s source code.

33

Figure 8. GraphQL sensor readings query

This key was the same for all accounts and all login sessions, meaning there was no way to
distinguish between different user accounts or permission levels. Because of this, we were able to
alter the query being sent to print out the email and account information of all of the users on our
app. The output of this malicious query is shown in Figure 9.

34

Figure 9. Sensitive information dump through GraphQL

This vulnerability fell into scenario S1 in figure 7 and was required to be remediated immediately as
per our previous discussion on risk tolerance.

Static:

The frontend application can be downloaded on Android devices in the form of an APK file. One
attack vector is decompiling the source code contained in the file and examining the contents for
potential vulnerabilities. To initiate the reverse engineering, we used the open-source tool JADX to
decompile the latest version of our APK. The first interesting piece of information we were able to
find was contained in the AndroidManifest.xml file, which can be seen in Figure 10.

35

Figure 10. AndroidManifest.xml

Various library and SDK versions can be found here, which an attacker could look up in order to
find pre-existing vulnerabilities with those specific versions. It also shows that our application is
communicating in cleartext with HTTP API endpoints so that traffic can be sniffed and read
without having to decrypt the data.

Additionally, we found a more pressing issue in the libapp.so file. It contained the URL of our API
endpoint, our static API key, as well as a bunch of other information about our AWS resources. A
segment can be seen in Figure 11.

Figure 11. Output of libapp.so

Using the data discovered, an attacker would not even need to create an account in order to send
the malicious query seen in the previous section. This vulnerability also falls into scenario S1 since it

36

is a continuation of the GraphQL misconfiguration and was fixed with the same remediations.
Additionally, we can compile our APK in an obfuscated mode to prevent users from being able to
see all of the source code in plaintext, which would alleviate many of the issues seen here.

5.8.2 AWS Testing Results

The outcome of our AWS testing was that we needed to review the scoping of our users, roles, and
policies. The current configuration of AWS accounts for team members allows full unscoped access
to every service. To correct this, users should be divided into the three divisions of the project; IoT,
AWS, Application. From here, access can be narrowed down to the services related to the division.
For example, IoT users would be able to access AWS IoT, Lambda, CloudWatch, AWS users would
have more broad access, and Application users would have access to Amplify, API Gateway, Lambda,
DynamoDB.

To solve issues with interservice permissions, we examined our existing policies attached to
resources. Many of our services were able to invoke any Lambda function or access any IoT rule. The
solution was to examine the Amazon Resource Name (ARN) of the resources that needed to
interact. By using the ARN in the access policy of the resource, we can implement the concept of
least privilege for our resources.

5.8.3 Basestation Testing Results

Scanning:

The scanning process for this test involved running the command line tool nmap against the IP
address of the pi. The full results of this will be included as Figure 12, but the only port of interest
we identified was TCP/22 running SSH.

Figure 12. Nmap Scan Results

Enumeration:

In the enumeration phase we began by identifying the version of SSH and the authentication
mechanisms available to an attacker. The SSH version identified was 8.4p1 which is a standard
up-to-date version of SSH with no public exploits. Next, it was noted that SSH was configured to
accept both passwords and keys.

37

Exploitation:

With the information that SSH accepts standard password authentication we set out to build a
custom wordlist for password spraying against the basestation login. We used the publicly available
tool Cewl to scrape our team website and put together a simple list of possible passwords for our
login. Given that this was running on a raspberry pi we decided the username for spraying would be
the default pi user which comes set up on all raspberry pi installations. With these pieces of
information, we used Hydra for performing the brute force. More specifically, the command run was
hydra -l pi -P cewl-passwords.txt ssh://192.168.1.205. After allowing to run for a few minutes it was
able to find the correct login was pi:cysecagri which is an incredibly weak password for standard ssh
access. After logging in, we found that the default pi user also had root access to everything, so the
basestation was completely compromised. This attack falls into S7 in Figure 7, so the decision was
made to remediate this vulnerability immediately. Details of this remediation can be found in
section 5.9.

5.9 REMEDIATIONS

GraphQL Injection Vulnerability

This vulnerability was the most severe issue found during our security testing. Because of this, we
decided not only to remediate it as quickly as possible but also to ensure our GraphQL API is using
the industry's best practices for user authentication. Our proposed remediation centers around
switching our AWS infrastructure from using a statically generated API key for user authentication
to our Cognito user pool. This change will give us the granularity to control permissions for API
queries on a user-by-user basis. With this in place, an individual user could only ever run a single
query against their own account to load their own sensor values. Any attempts to access other user
account data would not only be denied but would also generate security logs for our team to
analyze and determine appropriate action for the offending account.

As of writing, this remediation has not been implemented yet. The procedure for making these
changes has been documented extensively, however, the actual implementation has required more
troubleshooting than our team currently has the bandwidth for. Any further development on this
project will require this remediation to be fully implemented for scaling to any additional users.

Mobile App Reverse Engineering

While nothing incredibly pressing came out of the static testing, a few good practices could have
been followed that we missed. The first and most important would be to obfuscate our code when
creating the APK to prevent users from easily being able to see the underlying source code. This
would stop an attacker from seeing all of the frameworks and libraries we are using for the
application which should also be regularly checked to make sure there are no known vulnerabilities
contained in them. This can easily be implemented by adding the obfuscate option when compiling
the APK file. Additionally, in the future binary protection could be implemented to prevent an
attacker from changing the applications code and enabling unapproved functionality. This can be
done with things like tamper detection, encoding, and encryption.

Basestation SSH Vulnerability

38

Due to the severity and possible impact of this vulnerability it was decided that immediate
remediation would be required. There are a plethora of ways to go about mitigating the risk posed
by a weak SSH login on a server. For this situation, we decided on a three-pronged approach to
reduce risk as much as possible while still maintaining maintenance access to the basestation. The
steps needed for our solution are as follows:

1. Move SSH to an ephemeral port
2. Disable password authentication and replace it with key-based authentication
3. Generate a secure maintenance key using asymmetric cryptography

We began by moving SSH off of its standard port (TCP/22) and having it run on TCP port 12317. This
will cause common network scans to report no SSH port open, reducing the likelihood of bots
attacking this server with brute force attacks. After this change, we edited the ssh.conf file on the
basestation to only accept trusted SSH keys. This will completely remove the ability to attempt
online brute force attacks as demonstrated in section 5.8.3. Finally, we generated a strong public
private key pair and placed the public key onto our basestation. This allows our developers with the
appropriate private key to access the server to perform updates or changes without opening the
server up to further attacks against SSH.

6 Implementation
Current implementation of our design includes progress towards round-trip communication
between the different layers of our IoT system. We established communication between our
Front-End application, AWS Cloud Service, and a mock-basestation written in Python. Due to
delayed part orders, we were unable to fully implement a custom LoRaWAN basestation during the
Fall 2022 semester. Thus, our first task in the spring will be to fabricate the basestation to enable full
round-trip communication. The LoRaWAN Concentrator chip we are waiting for is a Hardware
Attached to Top (HAT) design that will facilitate easy setup and low noise with our RaspberryPi.
Furthermore, we have manufacturer-provided instructions on how to set up the basestation using
the HAT chip in conjunction with our RaspberryPi model. With this in mind, we estimate this to
have a quick turnaround time. At the conclusion of the basestation’s integration into our IoT
system, we will begin security implementation along both communication paths attached to the
basestation.

In the meantime, our other subteams will begin implementing our security designs in the cloud
and front-end application. These tasks do not rely on having complete round-trip communication
implemented. A specific breakdown of these tasks can be found in Section 3.

6.1 IMPLEMENTATION SINCE 491

Our overall design has changed slightly since the completion of CprE 491. The first and most major
change came in the form of our user data storage mechanism. Originally we believed Amazon’s S3
storage system would be sufficient to store all of our user data and sensor readings. However, after
running a test instance of this solution for a few weeks, we realized that this approach would not be
able to scale well with our applications' full deployment size. To address this, we pivoted to using
another set of AWS services, AWS AppSync and DynamoDB. AWS AppSync uses GraphQL in AWS
for quick and efficient queries of large data sets and is often used to load social media posts for a

39

given user account. We use it to load all sensor readings for all the sensors owned by a single
account in our app. This not only increased query response time but also provided a much easier
path for scaling up our deployment to 10’s and 100’s of sensors and accounts.

Our frontend architecture has also changed since the prototype we demonstrated at the end of 491.
We used to handle the AWS API calls and authentication manually through native Flutter HTTP
requests. As we began to scale up the number of requests and users on our platform, we realized
this method was not maintainable. To correct this, we switched over to using the AWS Amplify
library developed for Flutter. This library has built-in methods for automatically authenticating and
requesting a plethora of different AWS resources. It has saved us countless hours of duplicate work
as well as providing centralized handling for security measures such as secret storage and user
account authentication.

The IoT infrastructure design has not changed significantly from our proposed design in CprE 491.
We have experimented with different versions of the basestation’s concentrator chip, but all
protocol choices have remained the same. We did add downlink functionality (i.e., messaging from
the front end application to end devices) after the usefulness of this feature was pointed out by an
industry expert. Our end devices can be rebooted or change their data collection interval from
downlinks. However, this functionality translates to any end device in the system. For example, a
useful feature would be to remotely activate an irrigation mechanism when soil moisture is
measured under a certain threshold. This concept could be greatly expanded to incorporate several
automated processes to monitor and maintain ideal growing conditions for farms of any size.

7 Professional Responsibility
This discussion is with respect to the paper titled “Contextualizing Professionalism in Capstone
Projects Using the IDEALS Professional Responsibility Assessment,” International Journal of
Engineering Education Vol. 28, No. 2, pp. 416–424, 2012

Table 5

Area of Responsibility Definition NSPE Canon

Work Competence Perform work of high
quality, integrity, timeliness,
and professional competence.

Perform services only in areas
of their competence; Avoid
deceptive acts

Financial Responsibility Deliver products and services
of realizable value and at
reasonable costs.

Act for each employer or
client as faithful agents or
trustees

Communication Honesty Report work truthfully,
without deception, and is
understandable to
stakeholders

Issue public statements only
in an objective and truthful
manner; Avoid deceptive acts.

Health, Saftey, Well-Being Minimize risks to safety,
health, and well-being of

Hold paramount the safety,
health, and welfare of the

40

stakeholders public.

Property Ownership Respect property, ideas, and
information of clients and
others.

Act for each employer or
client as faithful agents or
trustees.

Sustainability Protect environment and
natural resources locally and
globally.

Social Responsibility Produce products and services
that benefit society and
communities.

Conduct themselves
honorably, responsibly,
ethically, and lawfully so as
to enhance the honor,
reputation, and usefulness of
the profession.

7.1 AREAS OF RESPONSIBILITY

Pick one of IEEE, ACM, or SE code of ethics. Add a column to Table 1 from the paper corresponding
to the society-specific code of ethics selected above. State how it addresses each of the areas of
seven professional responsibilities in the table. Briefly describe each entry added to the table in
your own words. How does the IEEE, ACM, or SE code of ethics differ from the NSPE version for
each area?

Comparing to IEEE Computer Society

Work Competence:

NSPE Canon: “Perform services only in areas of their competence; Avoid deceptive acts”.

IEEE: Perform services adhering to own level of competence while being honest about that
level of competence.

Comparison: They both say the same thing.

Financial Responsibility:

NSPE Canon: “Act for each employer or client as faithful agents or trustees”.

IEEE: Do not participate in immoral financial activities. Provide services that do not
detriment your employer.

Comparison: They are similar but IEEE focuses on making sure your actions don’t hinder
the employer.

Communication Honesty:

NSPE Canon:“Issue public statements only in an objective and truthful manner; Avoid
deceptive acts.”.

41

IEEE: Be honest and make sure to communicate with affected parties should problems
arise.

Comparison: IEEE focuses more on daily conduct while NSPE focuses on organization
conduct.

Health, Safety, Well-being:

NSPE Canon: “Hold paramount the safety, health, and welfare of the public”.

IEEE: Health, safety and welfare of the public should be the number one focus.

Comparison: They both say the same thing.

Property Ownership:

NSPE Canon: “Act for each employer or client as faithful agents or trustees.”.

IEEE: Provide a fair agreement in terms of ownership.

Comparison: NSPE talks about ownership of property under an organization while IEEE
talks about ownership of property in general.

Sustainability:

NSPE Canon:

IEEE: Make sure not to harm the environment.

Comparison: Cannot compare.

Social Responsibility:

NSPE Canon: “Conduct themselves honorably, responsibly, ethically, and lawfully so as to
enhance the honor, reputation, and usefulness of the profession.”.

IEEE: Identify and report issues of social concern.

Comparison: This differs from the NSPE Canon in the fact that it talks less about
perception of the profession and more about what the public expects

7.2 PROJECT SPECIFIC PROFESSIONAL RESPONSIBILITY AREAS

Work Competence is an important part of every team, ours included. We currently function at a
medium level in relation to work competence. Every team member brings unique expertise to the
team that allows us to perform at a high level. However, since we are still young in our careers there
is much that we do not know, which we realize and continue to strive to get better every day.

Financial Responsibility is a low level of importance to us. We do not have a budget for our project,
but we still recognize that we need to be financially responsible with the money we are given. If we
are needing to buy a part for our system, we spend time making sure we are making a reasonable
and correct purchase so as to not waste our client's money.

42

Communication Honesty, for our group, is a medium level of importance to us. As a team, we have
multiple ways to communicate with each other. If one team member is falling behind with their
work, we communicate with them to figure out the problem and how to go about a solution to the
problem.

Health, Safety, and Well-Being are very important for us in a professional context. As a team, we are
currently at a low level but plan on focusing more on this area next semester when we start our
security implementation.

Property Ownership is a low level of importance to our team. We were given an AWS account by
our client to us, and we respect that. We will not use it for any personal project or manage it
irresponsibly.

Sustainability is an important aspect for us. We are currently at a high level of performance as a
team in this area. At the start of our project, we focused a large portion of our time on making sure
our system would be sustainable for farmers so that they can use it from planting season to harvest.

Social Responsibility does not apply to our group. At the moment, we are not developing a system
that is important socially speaking.

7.3 MOST APPLICABLE PROFESSIONAL RESPONSIBILITY AREA

The most applicable professional responsibility area for this project would be sustainability. Our
products will be deployed in fields that require constant maintenance and specific balances of
nutrient levels. If our product does not respect this environment and take proactive steps to prevent
damage, it will fail as none of our users will want to trade our product for the health of their crops.

We plan on ensuring our systems hold sustainability at the highest standard by regularly testing the
durability and composition of our products before deploying them in fields. We only buy and test
parts that are rated for outdoor weather conditions and have a long life span. We also research the
materials used for these products to ensure there is a minimal amount of possibly toxic materials

8 Future Work

8.1 IOT DEVICES FUTURE WORK

There are a few points in the perception and networking elements of the design that can be
continued. One example is to redesign the basestation to be more cost and energy efficient. The
RaspberryPi 4B was excellent for prototyping because its extra computing power allowed for more
analysis and testing. However, for deployment in agriculture, the computing power of the
RaspberryPi is not necessary. Redesigning the basestation to strictly support packet forwarding and
its configuration would be worthwhile.

Alongside creating a new device, evaluating alternative network servers to The Things Network
would be a good next step. In this project, the LoRaWAN concentrator chip we selected had limited
network servers it could interact with (i.e., The Things Network and Chirpstack). Ideally, a new
basestation could be configured to interact with any LoRaWAN network server. This would allow for
cost efficiency analysis between LoRaWAN network servers, cloud services, and even investing in a
server for the project.

43

Finally, fabricating renewably powered end devices would be better for environmental concerns.
The introduction of renewable or even batteryless sensors adds a level of complexity that was
deemed out of scope during this project. However, with a fully functioning infrastructure in place, it
would be a reasonable next step to see how the energy supply to sensors could be moved away from
batteries.

8.2 AWS FUTURE WORK

There are a few aspects of AWS that may be continued. First, as the project grows migrating to
Infrastructure as Code would enable developers to manage versioning more easily. This may include
using Terraform and Drone in conjunction to manage a CI/CD pipeline. Second, implementing
anomaly detection is a big task that could be integrated into our existing AWS infrastructure. By
using OpenSearch or the ELK stack, machine learning can be used to add to the data collection
monitoring. Finally, as discussed above in section 5.8.2, a division of developer permissions to align
with the subsections of the project will allow for security best practices.

8.3 MOBILE APP FUTURE WORK

Adding more advanced features to support power users of our platform is the most important
future work. There are a plethora of different additional configuration options that could be added
for users to better control their sensors. We’ve discussed including options for optimal
water/temperature levels on a per sensor bases so users can more easily understand if their plants
are receiving too much or not enough resources. Another feature discussed was the ability to
overlay the sensor positions on Google Maps so that users could see at a glance where each sensor
was located on their property.

9 Closing Material

9.1 DISCUSSION

Thus far, our project has yielded a usable mobile application and simple single-user AWS
infrastructure. Users are able to download our application and receive static data from AWS. The
only portion of our project that still requires significant development is the IoT sensors &
basestations. Moving forward into the next semester, this will be our primary focus, as we hope to
have as much time as possible set aside for security and testing. By the end of this year or January of
next year, we will have sensors reading and uploading data to our cloud infrastructure. There are a
number of functional requirements that still need to be addressed, mainly surrounding the access
of live and up-to-date data. However, we will also be dedicating a significant amount of time to
developing our intrusion detection systems going forward. This will require additional research into
possible machine-learning techniques and other data processing techniques.

9.3 CONCLUSION

At the end of our two semester pursuit, we have accomplished almost all of the major goals set out
for us at the beginning of the school year. We have a scalable solution that allows end users to buy
and deploy as many sensors and basestations as needed for their project. These sensors produce raw
data that is securely collected and stored in our AWS infrastructure. Finally, our frontend mobile

44

application contextualizes that raw data and produces information in a user-friendly, digestible
manner. The only major milestones that have yet to be accomplished for this project are the use of
cloud-based machine learning models for anomaly detection, and the integration of some of the
more advanced user controls for sensor deployment.

Our IoT team has put together a seamless pipeline from purchase to deployment of end user
basestation and sensor hardware, allowing for easy scaling no matter the size of the project.
Basestations are made of an easy to use Raspberry Pi 4 and a common LoRAWAN Pi Hat. These
parts keep costs low while providing the same reliability as larger commercial solutions. There is no
future work planned for the IoT team after this project concludes.

The AWS infrastructure that has been spun up for this project is secure in it’s handling of customer
data as well as efficient in it’s use of AWS resources. We followed the principles of lease privilege
when designing these systems in order to minimize damages in the case that a malicious user gains
control of an internal AWS service account. At peak load, our testing deployments never reached
more than $10 a month in server costs. This is owed to the use of low cost serverless computing and
minimal redundant resource usage. There are several pieces of future work to consider for the AWS
team after this project concludes. As mentioned above, the transition to a proper CI/CD pipeline
using Terraform is a must if this project is going to continue to be successful. There is also the
optional addition of machine learning for the purposes of anomaly detection, this would increase
user awareness and control over their crops.

Our mobile application has been the cornerstone of our success when demonstrating the power of
this technology. It allows us to demonstrate the responsiveness of our project through the real time
graphical representation of data from user sensors. Users have the ability to filter data collection
down to a specific day and sensor. This level of filtering gives users unparalleled granularity when
managing their crops. Future work for the app involves reimplementing a more complete state
management system to enable complex features as well as adding additional configuration choices
for sensors during deployment.

This project was a lofty undertaking; however, it’s allowed our team to push beyond our limits and
discover new and interesting possibilities in the realm of IoT and smart agriculture. We’ve produced
a polish final product that peers and professionals alike agree will benefit consumer agriculture as a
whole. We’ve produced detailed and insightful documentation for each step of this projects
development and deployment. Sdmay23-17 hopes to see this project continue to flourish under the
care of another senior design or research group, we know this has the potential to make a real
impact on real people

45

References

[1]N. Selimović, “ABP vs OTAA,” www.thethingsindustries.com, Nov. 17, 2017.
https://www.thethingsindustries.com/docs/devices/abp-vs-otaa/

[2]A. Mishra, “Cloud-based multi-sensor remote data acquisition system for precision agriculture
(CSR-DAQ),” Thesis, Iowa State Universiry, 2020.

[3]N. Selimović, “Best Practices,” www.thethingsindustries.com, 2022.
https://www.thethingsindustries.com/docs/devices/best-practices/

[4]K. Lee and J. Lu, “The New Generation LoRaWAN Sensors of SenseCAP S201X Sensors User
Guide.,” Nov. 2022. [Online]. Available:
https://files.seeedstudio.com/products/SenseCAP/S210X/SenseCAP%20S210X%20LoRaWAN%20Se
nsor%20User%20Guide.pdf

[5]M. El-Hajj, A. Fadlallah, M. Chamoun, and A. Serhrouchni, “A Survey of Internet of Things (IoT)
Authentication Schemes,” Sensors, vol. 19, no. 5, p. 1141, 2019, doi: 10.3390/s19051141.

[6]J. Mccormack et al., “Contextualizing Professionalism in Capstone Projects Using the IDEALS
Professional Responsibility Assessment,” International Journal of Engineering Education, vol. 28, no.
2, pp. 416–424, 2012.

46

Appendix A
Gantt Chart

47

Appendix B
System Diagram

48

Appendix C
Figma Page Designs

49

Appendix D
Risk Severity Table

50

Appendix E
Operation Manuals

CySecAgri: Basestation Set-up
Manual

Materials & Prerequisites
● A registered The Things Stack (TTS) account

(https://console.cloud.thethings.network)
● A Raspberry Pi Model 4B Starter Kit

○ https://www.amazon.com/GeeekPi-Raspberry-4GB-Starter-Kit/dp/B0B3M
2HKN6?ref_=ast_slp_dp

● A RAK 5146 PiHAT Kit for LoRaWAN
○ https://store.rakwireless.com/products/rak5146-kit?variant=41577988194

502
● A monitor, TV, or other screen with an HDMI port

Note: This manual shows frequency plans for LoRaWAN implementations in North
America. If you do not live in a North American country please check the link below to
see what frequency plan you should substitute during configuration.
(https://www.thethingsnetwork.org/docs/lorawan/frequencies-by-country/)

Flashing Raspbian to the Pi
Install the operating system for the basestation onto the Raspberry Pi.

1. Follow the instructions on the Raspberry Pi website to download and run imager
on your chosen platform (https://www.raspberrypi.com/software/)

2. Put Micro-SD card into USB adapter (provided in the Starter Kit)
3. Insert USB into the computer where imager was installed
4. Open imager application

a. Select Default Raspbian OS (32 bit)
b. Select your USB (mass storage device)
c. Write

https://console.cloud.thethings.network
https://store.rakwireless.com/products/rak5146-kit?variant=41577988194502
https://store.rakwireless.com/products/rak5146-kit?variant=41577988194502
https://www.thethingsnetwork.org/docs/lorawan/frequencies-by-country/
https://www.raspberrypi.com/software/

51

5. Wait for this process to finish
6. Remove the USB adapter from your computer and Micro SD card from the

adapter. Insert the Micro SD card into the bottom side of the Raspberry Pi

Install the RAK 5146 Pi Hat
Now, install the concentrator chip into the Raspberry Pi to enable LoRaWAN signal
aggregation.

1. Insert 4 brass standoffs through the bottom 4 screw holes of the 4 corners of the
Raspberry Pi

2. Screw 4 more brass standoffs from on top of the Pi into the 4 from the bottom
3. Press the RAK 5146 Base Board through the 4 brass standoffs and ensure all

pins are inserted into the GPIO pins of the Raspberry Pi
4. Insert the RAK concentrator chip into the slot on the top of the RAK 5146 base

board
a. NOTE: Insert at a 45 degree angle until you hear a click. The concentrator

module should stay at that 45 degree angle if you take your hands off
5. Press down on the raised part of the concentrator chip to align the screw holes

with the base board
6. Use the smallest included screws to secure the concentrator module to the base

board
7. Clip the GPS antenna into the GPS port on the base board
8. Clip the LoRa antenna into the LoRa port on the base board

Powering on the Pi
Next, turn the basestation on for the first time.

1. Insert power cable (included in the Starter Kit) into USB C port on Pi
a. Ensure the switch position has the raised line side NOT depressed
b. Other side into wall outlet

2. Insert micro-HDMI cable into micro-HDMI port on Pi and the other end into full
side HDMI on a monitor

3. Insert keyboard/mouse into USB on Pi
4. Flip power switch on Raspberry Pi
5. Monitor should display booting screens and status
6. Complete onscreen setup

a. Write down username and password created during setup
b. Connect the Pi to a reliable WiFi

7. Once in, open a command prompt and run sudo systemctl enable ssh. (This will
enable the ability to remotely connect the Pi in the future. Which removed the
need for a dedicated monitor, mouse, and keyboard for future configuration.)

52

Installing Basestation Software
With the preparation work complete, enable LoRaWAN gateway functionality on the
basestation. The following link may be helpful for reference:
https://github.com/RAKWireless/rak_common_for_gateway/tree/1dcdc30e1c7ec21f9d80
71eb45e59171e56b3718

1. On the Raspberry Pi run the command:
git clone
https://github.com/RAKWireless/rak_common_for_gateway.git

2. In the same command prompt, run:
cd rak_common_for_gateway

3. Then run:
sudo ./install.sh

4. When prompted select the option to install the gateway model: RAK5146(SPI)
5. After installation, reboot the Pi (sudo shutdown -r). It is now officially a

gateway.

Registering the Gateway with TTS
Finally, the basestation needs to be registered with the network server to manage
uplinks and downlinks in the IoT system.

1. Open a command prompt on the basestation and run:
sudo gateway-config

2. From the config menu select: Setup RAK Gateway Channel Plan
3. Select: Server is TTN
4. Finally, select US_902_928. Hit OK.

(*) This might vary depending on the region a basestation is deployed in. Consult
the Materials section for details.

5. At the top of the main configuration window record the Gateway ID for later use.
An example might look like: E45F01FAAE8B23D8

6. On a separate computer login to the TTS and navigate to the dashboard
7. At the top of the dashboard, click on Gateways
8. Click “Register Gateway” in the top right corner of the Gateways page
9. Enter the Gatewauy ID into the Gateway EUI field and click confirm
10. On the next page set a unique Gateway Name and ensure the FSB 2 frequency

plan is selected. Finally uncheck share status within network and uncheck share
location within network.

11. Click Register Gateway
12. Go back to the Gateways tab in the dashboard and select the newly created

Gateway
13. Then go to the API Keys tab on the left side of the Gateway page
14. From here give the API key a name and the following individual permission:

https://github.com/RAKWireless/rak_common_for_gateway/tree/1dcdc30e1c7ec21f9d8071eb45e59171e56b3718
https://github.com/RAKWireless/rak_common_for_gateway/tree/1dcdc30e1c7ec21f9d8071eb45e59171e56b3718

53

a. Link as Gateway to A Gateway Server (Write uplinks read downlinks)
15. In a few minutes, the basestation should appear as a connected gateway on your

TTS dashboard

CySecAgri: Sensor Set-up Manual

Materials & Prerequisites
● A registered The Things Stack (TTS) account

(https://console.cloud.thethings.network)
● A gateway registered to your TTS account (see CySecAgri: Gateway Set-up

Manual)
● A SenseCAP S2104 sensor

Note: This manual shows frequency plans for implementations in North America. If you
do not live in a North American country please check the link below to see what
frequency plan you should substitute during configuration.
(https://www.thethingsnetwork.org/docs/lorawan/frequencies-by-country/)

Creating a TTS Application
Before connecting the sensors, an application needs to be created to receive data from
them and approve sensor join-requests.

1. In the The Things Stack, navigate to the Applications tab and select “Create
Application.” Select a Application ID, Application Name, and provide an optional
description. Then select “Create Application” again to finish creating your

application.
2. On the left, select “API Keys.” Then, in the upper right, select “Add API Key.”

Give a name to your new key, leave the expiry date blank, and select “All current
and future rights.” Then “Create API Key.”

3. Your TTS application is now ready to receive sensor data.

https://console.cloud.thethings.network
https://www.thethingsnetwork.org/docs/lorawan/frequencies-by-country/

54

Connecting S2104 Sensors to TTS
Next, we will turn on and configure the sensors as well as configure our application to
accept data from them.

1. To begin setup, remove the sensor from the box and download the SenseCAP
Mate mobile application. Enable bluetooth on your mobile device. Open the app
and select “S210X Sensor.” Then select “Update.”

2. Hold the button/indicator LED (shown below) on the sensor for 3 seconds. You
should see the LED flashing slowly. This means it is now ready to pair with the
mobile application. Select the device that appears on the mobile application. The
ID number on the screen should match the S/N number on the sensor’s sticker.

55

3. Select the Settings tab on the top menu bar (right). You will then see several
options. Choose the following options:

a. Platform = The Things Network
b. Frequency Plan* = US915
c. Uplink Interval = 5
d. Activation Type = OTAA
e. Packet Policy = 1N

Note: For the DeviceEUI, APP EUI, and APP Key you can use the default
settings provided or create your own. However, these values must be unique for
every sensor in your implementation. Regardless, record these values in a
secure location for later use.
(*) Adjust this option based upon your geographical region.

4. Set the mobile application and sensor aside for the moment. Now, navigate to the
“Overview” menu of the TTS application you created previously. On the overview
screen, click the button labeled “Register end device”.

5. Choose “Select end device in the LoRaWAN Device Repository” and select the
options given below.

6. Select the “FSB 2” frequency plan. Then, using the credentials obtained from
pairing the sensor, fill in the Join EUI, Dev EUI, and AppKey information you
recorded. [NOTE: In this instance, JoinEUI and AppEUI mean the same thing.]
The other settings can be left to their defaults. Once completed, select “Register
End Device.”

7. Return to the mobile application, select “Send” on the bottom right. The LED
indicator will begin a “breathing” pattern and when the sensor connects to the
gateway it will flash several times. Your sensor is now connected to your network!

56

CySecAgri: Application Development
Environment Set-Up Manual
Setup Windows Environment

1. Download Flutter: https://docs.flutter.dev/get-started/install/windows
a. Follow the install for Windows as well as the set up editor section on the

next page to set up VScode for Flutter.
i. This should set up an Android emulator to use for VScode through

Android Studio.
2. Clone repository from GitLab: https://git.ece.iastate.edu/sd/sdmay23-17

a. Need to be on Iowa State Wifi or VPN to access GitLab.
3. Open the project through VScode.

a. cd into the flutter_application_3 directory.
i. cd sdmay23-17/Flutter/flutter_application_3

4. Next run `flutter pub get` to get all of the applications dependencies.
5. Start the emulator through VScode.

a. Click the highlighted button in the picture below. Then select the emulator
you created from Android Studio.

6. In your terminal type the command `flutter run` to run the application.
7. In your terminal type the command `flutter test` to run the unit and widget tests

for the application.

https://docs.flutter.dev/get-started/install/windows
https://docs.flutter.dev/get-started/editor
https://git.ece.iastate.edu/sd/sdmay23-17

57

Setup MacOS Environment
1. Download Flutter https://docs.flutter.dev/get-started/install/macos

a. Follow the install for Windows as well as the set up editor section on the
next page to set up VScode for Flutter.

2. Clone repository from GitLab: https://git.ece.iastate.edu/sd/sdmay23-17
a. Need to be on Iowa State Wifi or VPN to access GitLab.

3. Open the project through VScode.
a. cd into the flutter_application_3 directory.

i. cd sdmay23-17/Flutter/flutter_application_3
4. Next run `flutter pub get` to get all of the applications dependencies.
5. Start an iPhone or iPad through Simulator.
6. Start the emulator through VScode.

a. Click the highlighted button in the picture below. Then select the emulator
you are currently running from Simulator.

7. In your terminal type the command `flutter run` to run the application.
8. In your terminal type the command `flutter test` to run the unit and widget tests

for the application.

https://docs.flutter.dev/get-started/install/macos
https://docs.flutter.dev/get-started/editor
https://git.ece.iastate.edu/sd/sdmay23-17

58

CySecAgri: Mobile App Proxy Set-Up
Manual

1. Install Android Studio
2. Install BurpSuite
3. Export BurpSuite Proxy CA
4. Copy CA (drag and drop) to Android Emulator
5. Import CA inside android settings (security/trust/add ca)

a. This will put it in the `user` certificate space in android
6. Add following to the android/app/src/main/res/xml/network_security_config.xml

file inside of the flutter project

<network-security-config>
<base-config cleartextTrafficPermitted="true">
<trust-anchors>
<certificates src="system" />
<certificates src="user" />
</trust-anchors>
</base-config>
<domain-config cleartextTrafficPermitted="true">
<domain includeSubdomains="true">127.0.0.1</domain>
</domain-config>

</network-security-config>

7. Add android:networkSecurityConfig="@xml/network_security_config" after
<application in the AndroidManifest.xml file

8. Login to the mobile app through the emulator and see the login request captured
in BurpSuite

